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1. Introduction

Previous semester we worked on document tampering classification. We looked into ICLR-2018 findit challenge
[1] and evaluated various methods used in the challenge.

This semester we looked into document tampering detection. Goal is find the region where the document is
forged. The problem becomes challenging due to the lack of large datasets to train.

2. Method

Similar to Yashas’ work [2] we want to overcome the barrier of insufficient data by creating large amount of
synthetic images and using domain adaptation improve the precision of our CNN model.

2.1. Dataset

For detection we are using the Find-it dataset [1] which provides 100 images for training and 80 images for
testing. Validation set is created by dividing the training set into 2 sets using 90-10 ratio.
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Figure 1: Images from the dataset. Green mask shows the tampered region

2.2. Synthetic Data creation

As tampered images are so low. It makes it very hard to train a CNN architecture with such data. Hence
we create synthetic tampered images using 3 types of tampering.

1. In-painting
2. Copy-paste
3. Splicing


https://shubhmaheshwari.github.io/document_image_tampering
http://preon.iiit.ac.in:9090

Find-it dataset provides 470 pristine images for classification. To create tampered images we first use a text
detector [3] to extract text from the documents. To extract characters from the document, we use connected
components. Finally different types of tampering are created by replacing the text region.

Thus, we create total of 5000 synthetic images. See figure-2 for examples of tampering.
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Figure 2: Ezamples of synthetic data generated. (a)Red region was in-painted. (b) Green region was copied to red region. (c) Red
region was copied from some another image

2.3. Creating Patches

The input to the model are 64x64 patches. To extract patches from the image. First, we run a text detector
on the documents to detect the text. We use well known text detector by [3]. Then extract 64x64 patches are
created by extracting the region around the text. This becomes the input to our model.

2.4. Class Imbalance

As a documents generally contains large amount of text out of which only a few regions are tampered.
The data becomes highly imbalanced. In the find-it dataset we noticed that on average only 3.0% of patches
extracted from an image were tampered. Hence during training tampered patches are over-sampled. We kept
the ratio at ratio of 32:1. The chance of picking a tampered patch is 32 times more likely than a pristine patch.

2.4.1. Architecture
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Figure 3: Model Architecture

As seen in the figure during training source model and target model are trained simultaneously. We are
using an 5 layer CNN as the trunk of our architecture. The weights between them are shared. After passing it
through 2 fully connected layers, to get a 256-dim representation for source and target images, between which
the distance is minimized using MMD loss defined as:

Lo = minll g 3 0o - 1 3 0t W

Ts€Xs T €Xy

where z, and z; are features for the source and target images respectively. ®(zs)and®(x;) are the calculated
by passing the representation through Gaussian kernel.



3. Experiment

3.1. Training

Figure 4 shows the training and validation loss with and without using augmented data.
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Figure 4: Train & Validation Loss
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Figure 5 shows the training and validation accuracy with and without using augmented data. Here validation
accuracy on the find-it images is shown by pink color.
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Figure 5: Train € Validation Accuracy
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As accuracy is not a good metric for evaluating hence we are also measuring the fl score during training.
Figure 6 shows the training and validation fl-scores with and without using augmented data. It can clearly be
seen that the model has over-fitted on the training data and hence is performing poorly on validation.
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Figure 6: Train & Validation F1 score

3.2. Examples
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Figure 7: Results of detection on test data

For more results go to this link

4. Conclusion

We can see that the model is performing very poorly even after training with synthetic images. A large
amount of mis-classification is resulting in very low precision and fl-score. A change in architecture to models
like RCNN should definitely provide better results.
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